Name of HEI: Higher School of Biological Sciences of Oran

Departement : Second Cycle

Syllabus of the Subject

Enzyme engineering 2: Immobilization of biological systems

LECT	URE TEACHER	Omar Khelil			
		Student reception per week			
Email	omar.khelil.essbo@gmail.com	Day:	Sunday	Hour:	8h30-10h00
Office phone	_	Building:	Educational building	Bureau:	Enzyme Engineering Lab

Lab Session					
(Student reception per week)					
NAMES AND FIRST	Reception	Session 1		Session 2	
NAMES OF TEACHERS	office/room	Day	Hour	Day	Hour
Ame al Damueus of	Enzyme	Saturday	10h00-	Monday	10h00-
Amel Benyoucef	Engineering Lab		12h30-		12h30-
Dilak Nardias Farah	Enzyme	Tuesday	10h00-	Wednesday	10h00-
Bilek Nardjes Farah	Engineering Lab		12h30-		12h30-

COURSE DESCRIPTION			
Objectives	 Understand the principles and importance of immobilization in enzyme engineering and biotechnology. Identify and evaluate different immobilization techniques for enzymes and cells. Analyze the factors that influence the immobilization process and choose appropriate conditions for specific applications. Characterize immobilized enzymes and cells using relevant techniques. Apply immobilized enzymes and cells in various biotechnological processes. Recognize the industrial applications and potential of immobilized enzymes and cells. 		
Type of Teaching Unit	Fundamental Teaching Unit		
Succinct Content	The field of enzyme immobilization is a dynamic and interdisciplinary domain that sits at the intersection of scientific discovery and engineering innovation. It draws upon the principles of basic biochemistry and biophysics, requiring a profound understanding of the fundamental processes that govern biological systems. This fusion of scientific and engineering inputs is fundamental to the success of enzyme immobilization techniques. In this course, students will delve into the intricacies of enzyme immobilization, exploring its historical development, its wide-ranging applications in biotechnology and industry, and the critical factors that influence the choice of immobilization methods. As we embark on this journey, students will discover how the marriage of scientific insights with engineering prowess has paved the way for		

	groundbreaking advancements in harnessing the potential of immobilized enzymes and biological systems.		
Course Credits	4		
Course Coefficient	2		
Weighting for Participation	10%		
Weighting for Attendance	10%		
Calculation of Average CA	Average CA = (Lecture assessment x 0.1) + (Practical session assesments x 0.15) + (Laboratory notebook x 0.3) + (Lab report x 0.25) + Lab final exam x 0.2)		
Learning Outcomes	 Understand the principles of enzyme immobilization and its crucial role in enhancing stability, reusability, and catalytic efficiency in biotechnological applications. Demonstrate technical competence in selecting immobilization techniques for enzymes and cells based on specific applications, showcasing proficiency in diverse methodologies. Analyze factors influencing immobilization, such as pH, temperature, substrate concentration, and matrix selection, to optimize conditions in practical scenarios. Apply immobilized enzymes and cells in various biotechnological processes like biosensors and bioremediation, integrating theoretical knowledge with practical applications. 		

	CONTINUOUS ASSESSMENT OF KNOWLEDGE						
	FIRST ASSESSMENT (Lecture assessment)						
Day	Session	Duration	Type (1)	Permitted documents (Yes, No))	Grading scale	Discussion after evaluation (date of consultation of the copy)	Evaluation criteria (2)
	Lecture	-	Written	Yes	10%	-	S
		S	ECOND AS	SESSMENT (La	b assessmen	ts)	
Day	Session	Duration	Type (1)	Permitted documents (Yes, No))	Grading scale	Discussion after evaluation (date of consultation of the copy)	Evaluation criteria (2)
	Lab	10 min	Written	No	35%	-	Α

⁽¹⁾ W: Written, IP: Individual presentation, CP: Class presentation, EX: Experimentation, MCQ: Multiple-Choice Questions

⁽²⁾ Evaluation criteria: A: Analysis, S: Synthesis, AR: Argumentation, D: Approach, R: Results

EXPECTATIONS				
	 Active Participation 			
Expected from students	 Inquisitive Attitude 			
(Participation-Involvement)	 Respectful Engagement 			
	 Application of Knowledge 			
	 Regular Attendance 			
Expectations of the teacher	Preparation			
Expectations of the teacher	 Collaborative Learning 			
	 Feedback and Reflection 			

BIBLIOGRAPHY				
Books and digital resources	1. M	essing, R. (Ed.). (2012). Immobilized enzymes for industrial		
	re	actors. Elsevier.		
	2. G	uisan, J. M. (Ed.). (2006). Immobilization of enzymes and cells		
	(\	ol. 22). Totowa, NJ: Humana Press.		
	3. D	wevedi, A. (2016). Enzyme immobilization: advances in		
	in	dustry, agriculture, medicine, and the environment. Springer.		
	4. W	ingard, L. B., Katchalski-Katzir, E., & Goldstein, L. (Eds.). (2014).		
	In	nmobilized Enzyme Principles: Applied Biochemistry and		
	Bi	oengineering, Vol. 1. Elsevier.		
Journal articles	1. Di	Cosimo, R., McAuliffe, J., Poulose, A. J., and Bohlmann, G.		
	(2	013) Industrial use of immobilized enzymes. Chemical Society		
	re	views 42, 6437–74.		
	2. Fu	ıkui, S., & Tanaka, A. (1982). Immobilized microbial cells .		
	Aı	nnual Reviews in Microbiology, 36(1), 145-172.		

